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Abstract

ROLE OF BCL-2 FAMILY MEMBERS TO PROMOTE GLUCOCORTICOID –

INDUCED APOPTOSIS BY MEK INHIBITORS IN LEUKEMIC CELLS

By Rambal Anila Ashok, M.S.

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science, Environmental Studies at Virginia Commonwealth University.

Virginia Commonwealth University, 2009

Major Director:  Dr. Hisashi Harada
Assistant Professor, Department of Internal Medicine

Glucocorticoids (GC) are common components of many chemotherapeutic regimens for 

lymphoid malignancies.  GC-induced apoptosis involves an intrinsic BCL-2 family-

regulated pathway.  It has been shown that BIM (BCL-2 interacting mediator of cell 

death), a BH3-only pro-apoptotic protein, is up-regulated by dexamethasone (Dex) 

treatment in acute lymphoblastic leukemia (ALL) cells.  Furthermore, BIM is inactivated 

by extracellular signal-regulated kinase (ERK)-mediated phosphorylation.  We therefore 
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hypothesized co-treatment with Dex and MEK/ERK inhibitors would promote apoptosis 

in ALL cells through BIM up-regulation and activation.  We show here that a MEK 

inhibitor, PD184352 synergistically enhances Dex lethality in CCRF-CEM (T-ALL) 

cells.  Co-treatment with Dex and PD184352 results in BIM accumulation.  Down-

regulation of BIM by short-hairpin RNA in CCRF-CEM cells suppressed apoptosis by 

Dex/PD184352 co-treatment.  In contrast, another BH3-only protein, BAD is 

dispensable.  Thus, BIM is a critical molecule in this regimen, and targeting BIM by 

drugs combination could be effective on ALL and possibly other malignancies.

Key words: Leukemia, BCL-2, apoptosis, glucocorticoids, MEK inhibitor
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Introduction

Cancer and Apoptosis:

Cancer can be defined as a condition in which mutated cells divide without 

control and are able to spread to adjacent or other tissues.  Cancers are of various types 

depending upon the cells from where they originate.

Carcinoma occurs in cells covering the body surfaces such as breast, colon and is the 

most frequent type of cancer. 

Sarcoma occurs in cells of supporting tissues such as cartilage, fat, muscle and bone. 

Lymphoma occurs in the lymph nodes and impairs the body’s immune system. 

Leukemia occurs in the blood cells of the bone marrow and they circulate and 

accumulate in the bloodstream.1

Cancer cells can spread to other parts of the body through the blood and 

lymphatic systems via two mechanisms: invasion and metastasis.  Invasion refers to the 

direct migration and penetration by cancer cells into neighboring tissues.  Metastasis 

refers to the ability of cancer cells to penetrate into lymphatic and blood vessels and then 

invade normal tissues elsewhere in the body via the circulation system.  
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Cells have a finite lifespan and cell death occurs mainly as a result of passive 

necrotic processes or due to an active process of programmed cell death termed 

apoptosis.  Necrosis is premature death of cells, caused by external factors like infections 

or trauma.  Necrosis may prove to be fatal and it is in contrast to apoptosis. Figure 1 

illustrates the difference between necrosis and apoptosis.
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Figure 1: Difference between necrosis and apoptosis. Cells undergoing necrosis 

initially swell and their internal components or organelles break down. The cells 

eventually rupture and spill debris that leads to local inflammation. This inflammation 

can then result in the death of adjacent cells.  During apoptosis, the cell breaks up into 

several smaller bodies that are still surrounded by a membrane. These "apoptotic bodies" 

then are engulfed and destroyed by scavenging cells.  Reference (2): Goodlett RC



www.manaraa.com

4

Apoptosis plays an important role both in human embryonic development and in 

adult tissue homeostasis.  Apoptosis is the most common mechanism by which the body 

eliminates damaged or unneeded cells without local inflammation from leakage of cell 

contents.  In normal cells, apoptosis is initiated in response to developmental cues, cell 

stress, and changes in growth factor signaling.    Dysregulation of apoptosis is implicated 

in a variety of diseases states.  Accelerated cell death is implicated in the pathogenesis of 

a number of diseases, including Alzheimer's disease and acquired immunodeficiency 

syndrome (AIDS).  Conversely, an inappropriately low rate of apoptosis can give rise to 

cancer or autoimmune disorders.

The balance of cell proliferation and apoptosis genetically controls cell growth; 

dysregulation of this balance causes tumor development.  One group of genes implicated 

in the development of cancer is "oncogenes."  Oncogenes are activated by overexpression 

and/or mutations, resulting in uncontrolled cell growth.  A second group of genes 

implicated in cancer are the "tumor suppressor genes."  Tumor suppressor genes are the 

genes whose absence can lead to cancer.  One example of the tumor suppressor genes 

called "p53" can normally trigger apoptosis.  In cells that have undergone irreversible 

DNA damage, p53 protein eventually initiates cell suicide, thereby preventing the 

genetically damaged cell from growing out of control.  Thus, activation of oncogenes and 

inactivation of tumor suppressor genes are the key hallmarks of cancer and are critical for 

cancer development and tumor cell survival.3-5
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Apoptosis is executed through two major signaling pathways — the 'intrinsic' and 

the 'extrinsic' pathways .Figure 2. shows the diagrammatic representation of the intrinsic 

pathway  The intrinsic pathway is triggered within the cell by developmental cues or 

severe cell stress, such as DNA damage.  The extrinsic pathway is activated when a pro-

apoptotic ligand, for example, Apo2L/TRAIL (apoptosis-inducing ligand 2/tumor 

necrosis factor-related apoptosis-inducing ligand) binds to pro-apoptotic receptors, DR4 

and DR5.  The extrinsic and intrinsic pathways converge via activation of intracellular 

enzymes called 'caspases'.  The caspase cascade ultimately triggers cell death through the 

destruction of cellular proteins, which are important for cell viability.
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Figure 2: Intrinsic Pathway to carry out apoptosis. External stimuli such as UV or 

chemotherapeutic treatments trigger apoptosis through the BCL-2 family proteins

localized at mitochondria. The release of cytochrome c from mitochondria and

subsequent caspase 9 activation leads to cell death. Reference (6): Andersen MH



www.manaraa.com

7

BCL-2 Family Member Proteins:

The intrinsic pathway relies on the balance between pro- and anti-apoptotic 

members of the B-cell lymphoma-2 (BCL-2)-family proteins. They play an important 

role in the regulation of apoptosis as they have the ability to regulate mitochondrial 

cytochrome c release.  The BCL-2 family is subdivided into three main groups based on 

regions of one to four BCL-2 homology (BH1-BH4) domains and function. Multi-

domain anti-apoptotic subfamily which contains trans-membrane domains (TM) is 

typically associated with membranes (e.g., BCL-2, MCL-1, BCL-XL). Multi-domain 

pro-apoptotic BAX-like subfamily (e.g. BAX, BAK) lacks BH4 domains and promotes 

apoptosis by forming pores in mitochondrial outer membranes. BAX was the first death-

inducing protein identified as part of the BCL-2 family. BH3-only pro-apoptotic proteins 

is a structurally diverse group of proteins that only display homology within the small 

BH3 motif (e.g., BAD, BID, BIM, PUMA). The anti-apoptotic BCL-2 proteins inhibit 

apoptosis by preventing BH3-only protein-induced oligomerization of BAX and/or BAK 

at mitochondrial outer membranes, which would otherwise lead to the release of 

cytochrome c. The anti-apoptotic BCL-2 proteins differentially bind to the BH3-only 

proteins.  BH3-only proteins like BID and BIM interact with all anti-apoptotic BCL-2 

proteins, whereas others like NOXA interact only with certain BCL-2-family members. 

To date, over twenty different BCL-2 family members have been identified.7-12

BCL-2 family member proteins are essential for normal tissue development and 

homeostasis.  Figure 3 illustrates the BCL-2 family member proteins along with their 
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molecular weights, BH1-4 regions, and trans-membrane domains.  Homo- and hetero-

dimerization among the BCL-2 family proteins is one mechanism that regulates the 

apoptotic activity of these proteins.  BH3-only proteins, when over expressed, promote

apoptosis and are responsible for activating or suppressing pro- and anti-apoptotic BCL-2 

proteins.  It is now clear that activation of BH3-only proteins by apoptotic stimuli 

initiates mitochondria-dependent cell death pathway.  The intrinsic pathway begins with 

cell stress to activate BH3-only proteins, which cause cytochrome c release from 

mitochondria by activating BAX and/or BAK.  The anti-apoptotic BCL-2 family of 

proteins prevents this process.  Cytochrome c released from mitochondria binds the 

adaptor apoptotic protease activating factor-1 (APAF-1), forming a large multi-protein 

structure known as the apoptosome.  The apoptosome then recruits and activates caspase-

9, which in turn activates the downstream effector caspases, including caspase-3, -6, and 

-7, leading to target protein degradation. 
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Figure 3: Three classes of BCL-2 family member proteins. They include anti-

apoptotic, pro-apoptotic and BH3-only proteins.  The figure also shows the trans-

membrane domain along with the BH1-4 regions.  Reference (13): Taylor, CR
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Chemotherapy:

Chemotherapy is the general term for treatments with chemical agents to stop 

cancer cells from growing.  Chemotherapy can eliminate cancer cells at sites great 

distances from the original cancer.  As a result, chemotherapy is considered a systemic

treatment and causes therapeutic activation of apoptosis in cancer cells.  Commonly used 

anticancer drugs can induce tumor cell death by apoptosis.  Altered expression of the 

BCL-2 family proteins, either overexpression of pro-survival proteins or 

decreased/altered expression of pro-apoptotic members has been identified in many 

cancer cell types and may contribute to the resistance of these tumor cells to 

chemotherapeutic agents.  This observation, together with the central role of the BCL-2 

family proteins in cell death pathways, makes these proteins attractive targets to kill 

tumor cells or to sensitize them to death induced by common cytotoxic drugs. Figure 4 

illustrates the intrinsic pathway, which gets triggered when DNA damage occurs due to 

chemotherapeutic drugs Thus, targeting the intrinsic pathway by chemotherapeutic drugs 

is a strategy to kill tumor cells. In the present study we examine the role of two 

chemotherapeutic drugs - glucocorticoids and MEK inhibitors.
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Figure 4: Chemotherapy triggers the intrinsic pathway.

Chemotherapy triggers DNA damage which activates the BCL-2 family member proteins 

leading to cytochrome c release. Cytochrome c leads to formation of apoptosome, which 

activates caspases and eventually causes cell death.

Reference: http://www.researchapoptosis.com/apoptosis/pathways/intrinsic/index.m
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Glucocorticoids and their interaction with the BCL-2 family member proteins: 

Glucocorticoids (GCs): These are a class of steroid hormones produced in the adrenal 

glands.  GC induces apoptosis in certain lymphoid cells and plays an important role in the 

treatment of childhood acute lymphoblastic leukemia (ALL) and other lymphoid

malignancies.  Figure 5 explains that GC induces cell death via two possible pathways: 

The classic pathway: GC might induce cell death by directly regulating genes 

controlling cell survival and apoptosis, or via (de)regulating genes or gene networks 

leading to cellular distress, which in turn constitutes an apoptotic stimulus. In both 

scenarios, members of pro- and anti-apoptotic BCL-2 family proteins, referred to as the 

‘BCL-2 rheostat’, might be involved either as direct GR targets or as sensors for 

potentially harmful GC effects.  GC-induced intrinsic pathway regulated by the BCL-2 

family proteins can be broadly classified into three stages:

 Initiation stage: GC binds to the glucocorticoid receptor (GR), a ligand-activated 

transcription factor of the nuclear receptor superfamily that resides in the 

cytoplasm.  Then GR translocates into the nucleus and modulates gene expression 

via binding to specific DNA response elements or by protein-protein interactions 

with other transcription factors.
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 Decision stage: Pro- and anti-apoptotic BCL-2 family proteins regulate the 

execution of apoptosis at the mitochondrial level.  This leads to the release of 

cytochrome c from the intermembrane space of mitochondria into cytosol.

 Execution stage: The release of cytochrome c triggers the activation of caspases, 

which cleaves a variety of substrates and also results in the activation of 

endonucleases leading to DNA cleavage.  These events finally lead to cell death 

The alternative pathway: Apart from regulating the BCL-2 family members, GC has 

dramatic effects on metabolism in numerous lymphocytic and non-lymphocytic cells. 

Thus, anabolic processes (such as glucose uptake, amino acid transport, ATP production, 

RNA polymerase activity, nucleoside accumulation, protein and nucleic acid 

biosynthesis) are decreased and catabolic processes (such as protein and RNA 

degradation) stimulated.  In most tissues, GR is subject to negative feedback, making the 

above (and/or perhaps other) potentially harmful GC-mediated events transient.  In cells 

undergoing GC-induced apoptosis, GR is not repressed - to the contrary, there are several 

examples where sensitivity is associated with GR auto-induction.  In the continuous 

presence of GR (and even more so in the case of GR auto-induction), the above GC 

effects will become permanent and, given sufficient time, lead to a state incompatible 

with cellular survival.14-20
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Figure 5: Classical and alternative pathway for GC-induced cell death. Left side of 

the figure explains rapid apoptosis induced by GC by directly regulating typical apoptosis 

genes, possibly those controlling the “BCL-2 rheostat”. In the presence of (oncogenic) 

overexpression of anti-apoptotic BCL-2 family members (represented by BCL-2 in the 

figure), this mechanism may be delayed allowing a second mechanism to take place 

(right side of the figure) that proposedly critically depends on GR auto-induction 

("positive feed-back loop"). In its presence, otherwise transient, detrimental GC effects 

(catabolic effects with reduced macromolecule biosynthesis and others) may become 

permanent and thus incompatible with cellular survival.  Reference (21): Renner K
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Dexamethasone (Dex) is a member of the synthetic glucocorticoid and is used in 

chemotherapy to treat leukemia/lymphoma.  The current understanding of the 

mechanisms of Dex-induced apoptosis is as follows:

 Dex-induced apoptosis is regulated by the BCL-2 family proteins, which play 

vital roles in the decision stage. 

 It has been shown that BIM (BCL-2 Interacting Mediator of cell death), a BH3-

only pro-apoptotic BCL-2 family protein, is induced by Dex in leukemic cells and 

plays a critical role in Dex-induced apoptosis.22
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RAS-RAF-MEK-ERK pathway:

The RAS/RAF/MEK (mitogen-activated protein kinase/ERK kinase)/ERK

(extracellular signal-regulated kinase) pathway has diverse effects which can regulate cell 

cycle progression, survival or differentiation.  Abnormal activation of this pathway 

occurs in human cancer due to the activation of the upstream molecules by (1) mutations 

at membrane receptors such as FLT-3, KIT, or FMS, (2) overexpression of wild-type or 

mutated EGFR, or (3) chromosomal translocations such as BCR-ABL. Furthermore, this 

cascade also regulates the activity of many proteins involved in apoptosis by the post-

translational phosphorylation of apoptotic regulatory molecules including BAD, BIM, 

MCL-1, caspase-9 and more controversially BCL-2. 

RAS is an upstream activator of the RAF/MEK/ERK kinase cascade; it is a small 

GTP-binding protein. Four RAS proteins have been identified, namely Ha-RAS, N-RAS, 

Ki-RAS 4A and Ki-RAS 4B. The two isoforms of Ki-RAS are produced from the same 

gene by alternative splicing. RAS proteins show varying abilities to activate the 

RAF/MEK/ERK and PI3K/AKT cascades.

The mammalian RAF gene family consists of A-RAF, B-RAF and RAF-1 (C-

RAF).  RAF is a serine/threonine (S/T) kinase and is normally activated by a complex 

series of events including: (i) recruitment to the plasma membrane mediated by an 

interaction with RAS; (ii) dimerization of RAF proteins; (iii) phosphorylation

/dephosphorylation on different domains; (iv) disassociation from the RAF kinase 



www.manaraa.com

17

inhibitory protein (RKIP) and (v) association with scaffolding complexes [e.g. kinase 

suppressor of RAS (KSR)]. RAF activity is further modulated by chaperonin proteins.

MEK is a tyrosine (Y)- and S/T-dual specificity protein kinase.  Its activity is 

positively regulated by phosphorylation on S residues in the catalytic domain mediated 

by RAF. All three RAF family members are able to phosphorylate and activate MEK but 

different biochemical potencies have been observed (B-RAF > RAF-1 > A-RAF). The 

predominant downstream target of MEK is ERK. In contrast, downstream ERK has 

multiple targets. Thus, therapeutic targeting of MEK is relatively specific.23-27

ERK are S/T kinases and their activities are positively regulated by 

phosphosphorylation mediated by MEK.  ERK can directly phosphorylate many 

transcription factors including ETS-1, c-JUN and c-MYC. ERK can also phosphorylate 

and activate the 90 kDa ribosomal S6 kinase (p90RSK), which then leads to the 

activation of the transcription factor CREB. ERK has over 160 downstream targets and 

activates more then 70 substrates. Figure 6 explains the RAS/REF/MEK/ERK pathway.
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MEK inhibitors:

The RAF/MEK/ERK pathway is an important pathway to target for therapeutic

intervention.  Inhibitors of RAS, RAF, and MEK and some downstream targets have been 

developed and many are currently in clinical trials.

Blocking ERK activity via small-molecule MEK inhibitors has come to the 

forefront as an exciting approach in cancer therapeutics.  PD98059 was the first specific 

MEK inhibitor described.  It was identified by screening a compound library for 

inhibitors with an assay that measured phosphorylation of an ERK target protein in the 

presence of both MEK and ERK.  A second MEK inhibitor, U0126 was also identified by 

screening a compound library using an assay designed to find an inhibitor that could

antagonize activator protein-1-driven transcription without blocking the transcription of 

glucocorticoid response elements.  PD184352 (CI-1040), the MEK inhibitor used in our 

current study, was the first small-molecule MEK inhibitor that proceeded to clinical 

testing.  PD184352 was developed based on compounds and structures identified during 

the screening that led to the identification of PD98059, but had improved potency and 

selectivity. 28-31



www.manaraa.com

19

Figure 6: RAS/RAF/MEK/ERK pathway.  RAF proteins have been identified as 

critical signaling intermediates between RAS and ERKs.  MEK inhibitors block the 

pathway, which prevents the activation of transcription factors regulating gene expression 

for cell proliferation, survival, and differentiation.  Reference (32): Pritchard C.
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Hypothesis

We hypothesize that co-treatment of Dex and MEK inhibitors will synergize cell 

death in leukemic cells by the mechanism that a) GCs can up-regulate BIM; and b) 

pharmacologic MEK inhibitors may further potentiate BIM activation by blocking BIM 

phosphorylation and degradation.33 We specifically aim to understand the role of the 

following BH3-only proteins in the intrinsic pathway.  

 BIM: as it is induced by Dex and is activated by MEK inhibitors.  

 BAD: as it acts downstream of the MEK/ERK pathway.

 PUMA: as it plays a role in Dex-induced cell death in non-leukemic lymphoid 

cells.
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Materials and Methods

Cell line and culture:

The human T-ALL cell line CCRF-CEM was purchased from the American Tissue 

Culture Collection.  The cells were cultured in RPMI 1640 medium (Invitrogen) 

supplemented with 10% heat-inactivated fetal bovine serum (Invitrogen), and 

streptomycin/penicillin G (Invitrogen) at 37 oC in a 5% CO2 incubator.

Chemicals and antibodies:

Dexamethasone and Propidium Iodide (PI) were purchased from Sigma.  Antibodies for 

Western blot were purchased as follows: BIM from Calbiochem; BAX (N-20), --

tubulin, phospho-ERK, and ERK from Santa Cruz Biotechnology; BAK from 

Upstate/Millipore; BCL-2 from Sigma; MCL-1 from Assay Designs; BAD, PUMA, and 

BCL-XL from Cell Signaling Technology; GAPDH from Abcam.  A phospho-S65 BIM 

antibody was developed in our lab as described previously.33 A MEK inhibitor,

PD184352 was kindly provided by Dr. Steven Grant at Virginia Commonwealth 

University.  Annexin V-FITC was purchased from BD-Pharmingen.
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Plasmid construction and transfection:

For down-regulation of BIM by short-hairpin RNA (shRNA), pSR-BIM was constructed 

by inserting the target sequence for human BIM (GenBank AF032457, nucleotide 37-56; 

GACCGAGAAGGTAGACAATT) into pSUPER.retro.puro (Oligoengine) according to 

the manufacture’s protocol.  As control, a scrambled, non-specific sequence 

(AATTCTCCGAACGTGTCACGT) was inserted into the same vector (pSR-con).  For 

down-regulation of BAD or PUMA by shRNA, microRNA-adapted shRNA construct 

sdesigned against human Bad (5’-ACGTGCTCACTACCAAATGTTA-3’) or human 

puma (5’-ACCATTGCATAGGTTTAGAGAG-3’) were purchased from Open 

Biosystems.  Transfection was performed by electroporation using a Bio-Rad 

electroporator.  The CEM cells were suspended in RPMI 1640 (4 x 106/400 µl) with 10 

µg of DNA and electroporated in 0.4 cm cuvettes at 300 V, 500 µF. Puromycin (2

µg/ml) selection to establish stable clones began 24 hrs after electroporation.

Western Blot analysis:

Cells were pelleted by centrifugation (5000 rpm for 1 min), washed with PBS, 

resuspended in  lysis buffer {20 mM Tris (pH7.4)/ 137 mM NaCl/ 1 mM DTT/ 1% 3-[(3-

cholamidopropyl) dimethylammonio]-1-propanesulfonate/ 20 mM NaF/ 10 mM β-

glycerophosphate, and a protease inhibitor mixture (1:200 dilution; Sigma)}, and kept on 

ice for 20 mins.  They were then centrifuged at 13,000 rpm for 5 mins in cold room and 

the supernatant was used as whole cell lysate.  Protein concentration was determined by 
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the Lowry method (Bio-Rad).  Equal amounts of proteins were loaded on SDS/PAGE, 

transferred to a nitrocellulose membrane, and analyzed by immunoblotting. 

Cell Viability assay:

Cells were pelleted by centrifugation, washed with PBS twice, and resuspended in 100 µl 

of binding buffer (10 mM Hepes, 140 mM NaCl, 2.5 mM CaCl2). Annexin V-FITC (3 

µl) and Propidium Iodide (10 µl) were added to the cells and incubated at room 

temperature in dark for 15 mins.  Four-hundred µl of binding buffer was then added to 

the sample followed by flow cytometric analysis with FACScan (Becton Dickinson).

Statistical Analysis:

For flow cytometric analyses of Annexin-V/PI, values represent the means ± SD for three 

separate experiments. The significance of differences between experimental variables 

was determined using the Student’s t-test. Values were considered statistically 

significant at P < 0.05.
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Results and Conclusions

We first tested our hypothesis that up-regulation of BIM (by Dex) together with 

diminished phosphorylation of BIM (by MEK inhibitors) enhances cell death in CCRF-

CEM (CEM), an acute lymphoblastic leukemia (ALL) cell line.  A MEK inhibitor, 

PD184352 was used throughout this study.  Treatment with PD184352 or Dex alone 

shows apoptosis of about 8% and 17% respectively.  However, when the cells are co-

treated with PD184352 and Dex, apoptosis increases to about 60% (Fig. 7).  Treatment of 

as low as 30 nM Dex significantly increases cell death in combination with 5 M of 

PD184352.  The PD184352 dose-response curve reveals that as low as 1 M PD184352 

significantly increases the toxicity of 100 nM Dex.  Time course analysis indicates that 

simultaneous exposure of 100 nM Dex and 5 M PD184352 results in little apoptosis 

after 24 hrs, but extensive at later time points (data not shown).  We also observe Dex 

and PD184352 interactions in several other ALL cell lines.  These results indicate that 

minimally toxic concentrations of MEK inhibitors markedly potentiate the lethality of 

low concentrations of dexamethasone in ALL cells.
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Figure 7: CCRF-CEM (T-ALL) cells show an increase in apoptosis when co-treated 
with Dexamethasone and PD184352.
CEM cells were exposed to 5 M PD184352 (PD) and 100 nM dexamethasone (Dex) 
alone or in combination for 48 hrs. Cell death was quantified by Annexin-V-
fluorochrome conjugates (Annexin-V-FITC) and propidium iodide staining followed by 
flow cytometry analysis.
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Protein expression of the BCL-2 family members was determined by Western blots (Fig. 

8).  In CEM cells, BIMEL (extra-long) is the most abundant BIM isoform derived by 

alternative splicing [BIML (long) and BIMS (short) are the other two isoforms].  We 

observe the expression of BIMEL in cells co-treated with PD184352 and Dex is much 

more than that in cells treated with PD184352 or Dex alone.  Expression of BAD, 

PUMA, BAK, BAX, BCL-2, BCL-XL and ERK in the cells remains unchanged under all 

four treatment conditions.  MCL-1 shows reduced expression when cells are treated with 

PD184352 and increased expression with Dex treatment.  When cells are co-treated with 

PD184352 and Dex, MCL-1 shows similar expression as control.  Expression of 

phosphorlyated form of ERK (pERK) is totally abrogated by PD184352 regardless of 

Dex treatment, indicating that the ERK activity is inhibited by PD184352 independent of 

Dex.  GAPDH is used as a loading control.  Hence the expression of BIM is correlated 

with the percentage of cell death observed in Fig. 7.  In contrast, the expression of other 

members of the BCL-2 family proteins is not much altered under all four treatment 

conditions.
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Figure 8: Western blot analysis of the BCL-2 
family member proteins.

CEM cells were treated with 100 nM Dex and/or 
5 M PD184352 for 24 hrs.  Equal amounts of 
total cell extracts were subjected to Western 
blotting with the indicated antibodies.
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To examine the significance of BIM, we established the CEM cell clones that express 

shRNA for Bim to reduce the expression of endogenous BIM.  As control, a scrambled, 

non-specific shRNA construct was transfected.  Short hairpin RNA (shRNA) is used to 

silence gene expression via RNA interference.  BIMEL is highly induced in the 

transfected control cells when co-treated with PD184352 and Dex (Fig. 9a), which is also 

observed in the parental cells (Fig. 8).  The induction of BIMEL in shBIM clone 2 cells is 

completely inhibited under all four treatment conditions.  In shBIM clone 15 cells, the 

induction of BIMEL is partially inhibited in the four treatment conditions.  Expression of 

pERK in control, shBIM clone 2, and clone 15 cells is nil with PD184352 treatment.  In 

the case of treatment with Dex, the expression of pERK in all three clones is similar to 

the untreated control.  Thus, the expression of BIMEL in shBIM clone 2 and 15 is 

completely and partially down-regulated, respectively, without affecting the expression 

of pERK.  The cell death assay (Fig. 9b) illustrates that apoptosis in control cells with co-

treatment is around 45% and it is around 8% and 20% in shBIM clone 2 and clone 15 

cells respectively.  Hence cell death induced by Dex/PD184352 treatment corresponds to 

the BIM expression; i.e. apoptosis is completely inhibited in shBIM clone 2 cells and is 

partially inhibited in shBIM clone 15 cells as compared to the transfected control clone.   
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Figure 9a: Down-regulation of BIM by shRNA. 
shBIM clones 2 and 15 were established to down-regulate BIM by shRNA.  Cells were 
treated with 100 nM Dex and/or 5 M PD184352 for 24 hrs.  Equal amounts of total cell 
extracts were subjected to Western blotting with the indicated antibodies.

Figure 9b: BIM is required for cell death induced by Dexamethasone and 
PD184352.
CEM clones in Fig. 7a were exposed to 5 M PD184352 (PD) and 100 nM 
dexamethasone (Dex) alone or in combination for 48 hrs.  Cell death was quantified by 
Annexin-V-FITC/PI staining followed by flow cytometry analysis.
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We next examined the significance of BAD using the CEM clones that express shRNA 

for Bad.  We observe that expression of BAD in untreated clone 7 and clone 12 cells is 

completely abrogated by the introduction of shBAD (Fig. 10a, left panel).  However, the 

expression of BIMEL is similar among the transfected control and shBAD clone cells.  

When cells are treated with PD184352 and/or Dex, the expression of BAD is still totally 

inhibited in shBAD clone 7 cells (Fig. 10a, right panel).  In contrast, similar expression of 

BIMEL is observed in control and shBAD clone 7 cells.  Tubulin is used as a loading 

control.  These results indicate that down-regulation of BAD does not affect BIM 

expression.  The cell death assay (Fig. 10b) shows around 50% of apoptosis in all four 

clones co-treated with PD184352 and Dex.  This assay confirms that BAD is dispensable 

in cell death induced by co-treatment with PD184352 and Dex.
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Figure 10a: Down-regulation of BAD by shRNA.
shBAD clone 7 and 12 were established to down-regulate BAD by shRNA.  Cells were 
treated with 100 nM Dex and/or 5 M PD184352 for 24 hrs.  Equal amounts of total cell 
extracts were subjected to Western blotting with the indicated antibodies.

Figure 10b: BAD is dispensable for cell death induced by Dexamethasone and 
PD184352.CEM clones in Fig. 8a were exposed to 5 M PD184352 (PD) and 100 nM 
dexamethasone (Dex) alone or in combination for 48 hrs.  Cell death was quantified by 
Annexin-V-FITC/PI staining followed by flow cytometry analysis.
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Finally, we examined the significance of PUMA using the CEM clones that express 

shRNA for PUMA to down-regulate PUMA.  Since the shRNA plasmid construct harbors 

puromycin-resistant gene, we selected  two puromycine-resistant CEM clones (shPUMA 

clone 37 and clone 47).  The expression of PUMA in control, shPUMA clone 37, and 

clone 47 was determined when cells were treated with PD184352 and Dex alone or in 

combination (Fig. 11a). Tubulin is used as a loading control.  We observe that the 

expression of PUMA under all conditions is constant.  The cell death assay (Fig. 11b) 

shows similar amounts of apoptosis induced by Dex and/or PD184352 in between 

control, clone 37, and clone 47.  These results indicate that the shPUMA construct used is 

not working as desired.  Thus, this experiment needs to be performed using a different 

construct.
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               CEM/Control1       CEM/shPUMA   CEM/shPUMA

                                                   Clone 37                 Clone 47

Tubulin    

             

Figure 11a: The expression of PUMA in CEM/shPUMA clone 37 and clone 47.  
Cells were treated with 100 nM Dex and/or 5 µM PD184352 for 24 hrs.  Equal amounts 
of total cell extracts were subjected to Western blotting with the indicated antibodies.

Figure 11b: Cell death in CEM/shPUMA clone 37 and clone 47 treated with Dex 
and/or PD184352.  
CEM clones were exposed to 5 µM PD184352 (PD) and 100 nM dexamethasone (Dex) 
alone or in combination for 48 hrs.  Cell death was quantified by Annexin-V-FITC/PI 
staining followed by flow cytometry analysis.
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Based on the above results, we conclude that: 

 Combination of dexamethasone and PD184352 synergistically induces apoptosis 

in ALL cells.

 BIM plays a significant role in apoptosis induced by co-treatment with PD184352 

and Dex.  

 BAD knock-down experiments confirm that BAD is dispensable for cell death in 

this treatment. 

 Future work needs to be carried out on PUMA using a new construct to confirm 

whether it has any significant role in apoptosis induced by Dex and MEK 

inhibitors in ALL cells.
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Discussion

Glucocorticoids have been used in chemotherapy for leukemia, lymphoma, and 

myeloma for decades.  Although they are effective in the initial stages, resistance often 

emerges, and the molecular mechanisms of sensitivity/resistance to this agent are still not 

fully understood.  We and others have demonstrated that BIM, a BH3-only pro-apoptotic 

BCL-2 family, is transcriptionally induced by Dex treatment in various cell types and 

plays a critical role in Dex-induced cell death.  The activity of BIM is regulated not only 

by transcription, but also by post-translational mechanisms.  Among these, ERK-

mediated phosphorylation, ubiquitylation, and subsequent protein degradation has been 

demonstrated in a variety of cells and MEK inhibitors abrogate such regulation.12, 14-16  

Thus, we hypothesized combined treatment with Dex and MEK inhibitors might act 

synergistically in their cell killing activity.  We demonstrate here that Dex interacts in a 

highly synergistic manner with a clinically relevant MEK inhibitor (i.e. PD184352) to 

induce apoptosis in CCRF-CEM T-ALL cells.

The observation that the inhibition of cell death correlated well with the reduction 

of BIM expression by shRNA in clone 2 and clone 15 (Fig. 9a and 9b) strongly suggests 
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that BIM is a central regulator in this regimen at least in CCRF-CEM T-ALL cells.  

Recent results involving epithelial breast cancer cells suggest that BAD phosphorylation 

status represents the primary integrator of cell death following interruption of the AKT 

and ERK pathways.  However, down-regulation of BAD with shRNA, in marked contrast 

to BIM, failed to protect CEM cells from Dex/PD184352-mediated lethality (Figure 10 a, 

10b), suggesting that BAD is not a critical molecule in lethality in this setting.  

Differences between current and previous reports may therefore reflect cell type-specific 

roles of BAD in integrating death signals following concomitant interruption of the 

MEK/ERK and AKT pathways.  

PUMA seems to be dispensable for normal development and health, as puma-

deficient mice are born with normal appearance and body weight, and they also exhibit

normal cellularity and composition of hemopoietic organs. It has been shown that the 

level of puma mRNA increases in primary murine thymocytes exposed to Dex and non-

malignant thymocytes from PUMA-deficient mice are resistant to Dex-induced 

apoptosis.34 However, the expression of PUMA in CEM cells were not changed by Dex-

treatment in CEM cells (Fig. 7), and it has been recently reported that puma mRNA is not

regulated in Dex-treated ALL patients. Thus, the human puma gene is not a 

transcriptional target of the GR, and if Puma contributes to GC-induced apoptosis in 

human ALL, it does so in a transcription-independent manner. Hence, PUMA might play 

a minor role in the apoptosis induced by co-treatment with Dex and MEK inhibitors.
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It is widely recognized that the RAS/RAF/MEK/ERK signaling pathway mediates 

survival signaling in diverse transformed cell types.  The implication of the present 

findings is that in ALL cells, phosphorylation/degradation of BIM mediated by ERK may 

represent a pro-survival mechanism by which such cells escape the lethal consequences 

of GC treatment.  A corollary of this hypothesis is that MEK inhibition may potentiate 

the lethal effects of Dex and potentially other novel agents by preventing BIM 

phosphorylation/degradation.35-41 Thus, BIM phosphorylation/expression status may 

represent a determinant of the activity of such strategies.  If validated, this concept could 

have implications for the development of novel anti-leukemia regimens involving the 

combined administration of clinically relevant agents targeting at the 

RAS/RAF/MEK/ERK pathway (e.g. MEK inhibitors, farnesyltransferase inhibitors, 

HMG CoA-reductase inhibitors) and GC.  A recent study has demonstrated that the 

receptor tyrosine kinase inhibitor, SU11657 (potentially inactivating the RAS pathway) 

interacts synergistically with Dex to modulate signaling through BIM and to induce 

apoptosis in a highly GC-resistant ALL xenograft model.42 BIM also plays an important 

role in cell death induced by other chemotherapeutic drugs such as STI571 (imatinib 

mesylate)43-45 and histone deacetylase inhibitors (HDACI).46,47  In these cases, BIM is 

transcriptionally induced through FOXO and E2F, respectively.  If our hypothesis that 

combination of BIM up-regulation and stabilization synergistically promotes cell death is 

validated, it will be interesting to test whether combinations of STI571 or HDACI with 

MEK inhibitors interacts synergistically in ALL cells.  In fact, it has been shown that this 
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is the case in BCR/ABL+ leukemia cells and other adherent malignant cells.48,49 To date, 

several pharmacological MEK inhibitors including PD184352 (or CI-1040), PD0325901, 

and AZD6244 (ARRY142886) have been developed clinically.28-30 Results of early 

clinical trials indicate that it is feasible to achieve the desired pharmacodynamic effect 

(e.g. ERK inactivation) at well-tolerated doses of MEK inhibitors. Collectively, our 

findings could have implications for understanding the mechanisms underlying 

synergistic interactions between MEK inhibitors and other targeted agents in ALL and 

potentially other hematologic malignancies.
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